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SOLUTION TO EXAMINATION 2

Directions. Do all four problems (weights are indicated). This is a closed-book closed-note exam
except for two 81

2 × 11 inch sheets containing any information you wish on both sides. You are free
to approach the proctor to ask questions – but he or she will not give hints and will be obliged to
write your question and its answer on the board. Calculators are allowed but not essential – roots,
circular functions, etc., may be left unevaluated if you do not know them. Use a bluebook. Do not
use scratch paper – otherwise you risk losing part credit. Cross out rather than erase any work that
you wish the grader to ignore. Justify what you do. Box or circle your answer.

1. (25 points)
The basis of scalar diffraction theory is the
Fresnel-Kirchoff integral formula. In Fowles’ no-
tation (Eq. 5.11), this formula states

Up = − ikU0 exp (−iωt)
4π

×

×
∫ ∫

exp
(
ik(r + r′)

)
rr′

[
n̂ · r̂ − n̂ · r̂′] dA

where r′ is a vector from the (point) source to
a point on the aperture, r is a vector from the
observer to the same point on the aperture,

U0

exp
(
i(kr′ − ωt))
r′

is the optical disturbance at a point on the
aperture, Up is the optical disturbance at the
observer, ω = ck = 2πc/λ is the angular fre-
quency of the light, dA is an element of aperture
area, and n̂ is the normal to dA. [Note that,
in a typical geometry (source on the left, aper-
ture in the middle, observer on the right, and n̂
pointing to the left), n̂ · r̂ is positive while n̂ · r̂′
is negative, so that both terms in the square
bracket are positive.]

Consider this simple geometry: Let z be
the axis pointing from left to right. Place the
source at (x, y, z) = (0, 0,−D), the observer at
(X,Y,D), and the aperture in the plane z = 0.
The aperture is characterized by an aperture
function g(x, y) such that g = 1 where the aper-
ture is open, and g = 0 where the aperture is
opaque.

a. (10 points) Let δ be the maximum value of√
x2 + y2 on the aperture plane for which

the aperture is not opaque. Thus, for
this part of the problem, there are three
characteristic lengths: λ, δ, and D. By
moving around in the plane z = D, re-
stricting her own coordinates X,Y such
that

√
X2 + Y 2 � D, the observer finds

that the optical disturbance there is propor-
tional to the Fourier transform of g(x, y).
As someone who understands the physics of
diffraction, you realize that this information
implies that a single strong condition must
be satisfied which relates λ, δ, and D. Write
down this condition. (You needn’t prove it,
and you may omit factors of order unity.)

Solution. In order for the optical disturbance
Up(X,Y ) to be the Fourier transform of g(x, y),
our system must satisfy the Fraunhofer condi-
tion (see discussion in Fowles Section 5.6). The
basic idea of this condition is that the spheri-
cal curvature of the wavefront at the aperture
must be small compared to the wavelength of
the light, allowing us to treat the light at the
aperture as a plane wave. Omitting factors of
order unity, the Fraunhofer condition is

δ2 � Dλ .

This condition implies that the obliquity fac-
tor

[
n̂ · r̂ − n̂ · r̂′] is constant over the aperture,

the quantity eikr′
/r′ is nearly constant, and the

quantity eikr/r ≈ eikr. With these approxima-
tions, the optical disturbance

Up(X,Y ) ∝
∫ ∫

eikrdA.



b. (15 points) For this part of the problem,
take the aperture function to be

g(x, y) = 0, x < 0
g(x, y) = 1, x > 0 .

This describes a “knife edge” at x = 0 ex-
tending from y = −∞ to y =∞. Therefore,
in this part of the problem, δ = ∞: the
strong condition of part a. cannot be sat-
isfied. In this part of the problem, the ob-
server is fixed at (0, 0, D), i.e. atX = Y = 0.
With this aperture in place, the observer
records an irradiance Ia. With the aperture
completely removed (g ≡ 1), the observer
records an irradiance I0. Give the ratio
Ia/I0. To receive credit you must explain
why this ratio is correct.

Solution. According to the Fresnel-Kirchoff in-
tegral, the optical disturbance Up arises from a
superposition of secondary waves which originate
at the z = 0 plane. When the semi-infinite screen
is in place, due to the symmetry of the system ex-
actly half the secondary waves are blocked. Thus

Up =
1
2
U0 ,

or, in terms of intensity I ∝ |U |2,
I

I0
=
1
4
.

2. (25 points)
James Rainwater was awarded the Nobel Prize
in the 1980’s for experiments done at the Nevis
(Columbia) cyclotron in the 1950’s. He mea-
sured the sizes of nuclei using their interactions
with muons (heavy electrons) which were in orbit
about them.

In the following, use the Bohr picture to de-
scribe the muon orbit. For ease of numerical
computation, you may take the natural length
unit h̄/mec to be 400 fm; the ratio mµ/me of
muon to electron masses to be 200; and the fine
structure constant α to be 1/150. You may ne-
glect the difference between the muon’s actual
and reduced mass.

A muon in n = 1 Bohr orbit reacts with (is “cap-
tured” by) a Z = 50 nucleus before it decays:

µ− + (A,Z)→ (A,Z − 1) + νµ,

where the neutrino νµ has negligible rest mass.
Assuming that the initial and final nuclei have
the same infinitely large rest mass and therefore
a negligible kinetic energy, what is the neutrino
energy expressed in units of mec

2? (1% accuracy
is sufficient.)

Solution. The binding energy of the muon in
the Bohr model is given by:

BE =
1
2
mµc

2(Zα)2

and in our case Zα ≈ 1/3 and mµc
2 ≈ 200mec

2.
So

BE ≈ 11mec
2 .

Since the rest energies of the initial and final nu-
clei are taken to be the same, the kinetic energy
of the neutrino must be equal to the rest mass
of the muon minus the binding energy, or

KE(νµ) ≈ 200mec
2 − 11mec

2 ≈ 189mec
2 .

3. (25 points)
Consider the elastic scattering of a photon from
an infinitely massive, perfectly reflective, spher-
ical target of finite radius R (like a bowling ball
polished to a mirror finish). The bowling ball is
centered on the origin. The photon is incident
along the ẑ direction and scatters (reflects) into
the direction (θ, φ), where θ and φ are the usual
spherical polar angles. Note that θ = 0 means
that the photon remains undeflected. For this
problem, ignore diffraction and any other effects
which arise from the wavelike properties of the
photon.

a. (10 points) What is the total scattering
cross section σT , corresponding to any de-
flection of the photon? (You don’t need a
calculation here, just a correct answer and
a convincing explanation for it.)



Solution. The total cross section σT is the cross
sectional area of the photon beam that suffers
any deflection as a result of interaction with the
target. Neglecting diffractive effects, the only
photons scattered are those which intercept the
area of a hemisphere of radius R, projected into
the z = 0 plane. This is a circle of area πR2.
Thus

σT = πR2 .

b. (15 points) Calculate the differential cross
section

dσ

dΩ
,

where dΩ = sin θ dθ dφ is an element of solid
angle. (When you integrate your result over
the full solid angle, do you confirm your
answer to a.?)

Solution. A photon with impact parameter
b =

√
x2 + y2 intercepts the sphere at a point

on the sphere described by

θs = π − arcsin b
R

≡ π − ψ .

Just before it hits the sphere, it is travelling in
the direction

θ0 = 0 .

Before impact, the angle that the photon makes
with the normal to the sphere is ψ. Since the an-
gle of incidence is equal to the angle of reflection,
its direction changes by

∆θ = π − 2ψ .
Therefore the final angle θ of the photon is

θ = θ0 +∆θ
= 0 + π − 2ψ
= π − 2 arcsin b

R
.

Rearranging and differentiating,

arcsin
b

R
=
π

2
− θ

2

b = R sin
(π
2
− θ

2

)
= R cos

θ

2

db = −R
2
sin

θ

2
dθ .

An element dσ of beam cross section is equal to
|b db dφ|. Substituting from above,

dσ = |b db dφ|

=
R2

2
cos

θ

2
sin

θ

2
dθ dφ

=
R2

4
sin θ dθ dφ

=
R2

4
dΩ

dσ

dΩ
=
R2

4
.

This is an isotropic (constant) differential cross
section. Integrated over ∆Ω = 4π, it yields
σT = πR2 as in (a.). Note that the isotropy of
the differential cross section doesn’t follow au-
tomatically from the spherical symmetry of the
potential (an infinite wall at r = R). A differ-
ent spherically symmetric potential, for example
the Coulomb potential, yields the dramatically
different Rutherford result

dσ

dΩ
∝ 1
sin4 θ

2

.

4. (25 points)
A nonrelativistic particle of mass m is confined
to a one-dimensional box extending from x = 0
to x = L. Here a “box” is a square potential
well with infinite sides.

a. (10 points) In terms of n and other con-
stants, write down the energies En, 1 ≤ n <
∞, measured with respect to the bottom
of the potential well, that the particle is
allowed by Schrödinger’s equation to have.

Solution. We measure the energy E of the
particle with respect to the bottom of the well,
where V ≡ 0. We seek solutions of the time-
independent Schrödinger equation

(
− h̄2

2m
∂2

∂x2
+ V (x)

)
uE(x) = EuE(x) ,



with the boundary condition (because of the
infinite potential wall)

uE(0) = uE(L) = 0 .

The solutions are of the form

uE(x) ∝ sin knx

with kn = nπ/L. Therefore, from the time-
independent Schrödinger equation,

En =
h̄2k2

n

2m
=
n2π2h̄2

2mL2
,

with 1 ≤ n ≤ ∞. [As posed, the problem doesn’t
require a proof like the above; you just need to
write down the correct values of En.]

b. (15 points) Define N(E) to be the total
number of allowed states with energy ≤ E.
Taking n� 1, so that the distribution of E
is approximately continuous, calculate the
density of states

ρ(E) ≡ dN

dE
.

Solution. The difference in energy between two
adjacent states is

∆E ≡ En − En−1

=
(
n2 − (n− 1)2) π2h̄2

2mL2

= (2n− 1) π
2h̄2

2mL2
.

So when we increase the number of states by
∆N = 1 we increase the maximum energy by
∆E. The density of states is just the ratio:

ρ(E) ≡ dN

dE

≈ ∆N
∆E

as n→ ∞

=
2mL2

(2n− 1)π2h̄2

≈ mL2

nπ2h̄2 as n→ ∞ .

Expressing ρ(E) in terms of E and other con-
stants, we substitute

n2 =
2mL2E

π2h̄2

ρ(E) =
mL2

π2h̄2

√
π2h̄2

2mL2E

=
L

πh̄

√
m

2E
.


